欧美在线高清晰一区二区,2020精品日韩久久久久,91久久久久精品国产熟女,精品无码久久久久久动漫软件

世聯(lián)博研(北京)科技有限公司 主營(yíng):Flexcell細(xì)胞力學(xué)和regenhu細(xì)胞3D生物打印機(jī)銷(xiāo)售技術(shù)服務(wù): 美國(guó)Flexcell品牌FX-5000T細(xì)胞牽張應(yīng)力加載培養(yǎng)系統(tǒng),F(xiàn)X-5K細(xì)胞顯微牽張應(yīng)力加載培養(yǎng)系統(tǒng),Tissue Train三維細(xì)胞組織培養(yǎng)與測(cè)試系統(tǒng),F(xiàn)X-5000C三維細(xì)胞組織壓應(yīng)力加載培養(yǎng)系統(tǒng),STR-4000細(xì)胞流體剪切應(yīng)力加載培養(yǎng)系統(tǒng),德國(guó)cellastix品牌Optical Stretcher高通量單細(xì)胞牽引應(yīng)變與分析系統(tǒng) Regenhu品牌3D discovery細(xì)胞友好型3D生物打印機(jī),piuma細(xì)胞納米壓痕測(cè)試分析、aresis多點(diǎn)力學(xué)測(cè)試光鑷,MagneTherm細(xì)胞腫瘤電磁熱療測(cè)試分析系統(tǒng)
服務(wù)電話: 010-67529703
主營(yíng)產(chǎn)品: Flexcell細(xì)胞力學(xué)和regenhu細(xì)胞3D生物打印機(jī)銷(xiāo)售技術(shù)服務(wù): 美國(guó)Flexcell品牌FX-5000T細(xì)胞牽張應(yīng)力加載培養(yǎng)系統(tǒng),F(xiàn)X-5K細(xì)胞顯微牽張應(yīng)力加載培養(yǎng)系統(tǒng),Tissue Train三維細(xì)胞組織培養(yǎng)與測(cè)試系統(tǒng),F(xiàn)X-5000C三維細(xì)胞組織壓應(yīng)力加載培養(yǎng)系統(tǒng),STR-4000細(xì)胞流體剪切應(yīng)力加載培養(yǎng)系統(tǒng),德國(guó)cellastix品牌Optical Stretcher高通量單細(xì)胞牽引應(yīng)變與分析系統(tǒng) Regenhu品牌3D discovery細(xì)胞友好型3D生物打印機(jī),piuma細(xì)胞納米壓痕測(cè)試分析、aresis多點(diǎn)力學(xué)測(cè)試光鑷,MagneTherm細(xì)胞腫瘤電磁熱療測(cè)試分析系統(tǒng)
聯(lián)系我們

免校正多光阱細(xì)胞力學(xué)光鑷系統(tǒng)

  • 如果您對(duì)該產(chǎn)品感興趣的話,可以
  • 產(chǎn)品名稱(chēng):免校正多光阱細(xì)胞力學(xué)光鑷系統(tǒng)
  • 產(chǎn)品型號(hào):impetuxcomp
  • 產(chǎn)品展商:impetuxcomp
  • 產(chǎn)品文檔:無(wú)相關(guān)文檔
簡(jiǎn)單介紹

Optical manipulation systems for quantitative cell and tissue mechanics 世聯(lián)博研公司代理的免校正多光阱細(xì)胞力學(xué)光鑷系統(tǒng)(多光阱細(xì)胞力學(xué)光鑷生物分子力學(xué)光鑷,細(xì)胞微流變學(xué)光鑷)可以在已有顯微鏡上升級(jí)配置起來(lái),免校準(zhǔn)、使用簡(jiǎn)潔方便、經(jīng)濟(jì)。 在活細(xì)胞中,免校準(zhǔn)力測(cè)量 多點(diǎn)中,活性微流變學(xué)測(cè)量 細(xì)胞力學(xué)研究的自動(dòng)化例程 與相差、微分干涉或熒光顯微鏡兼容 組織中力測(cè)量(厚0.5mm) 高效捕捉、低細(xì)胞損害 樣品*大激光功率控制

產(chǎn)品描述

世聯(lián)博研公司代理的免校正多光阱細(xì)胞力學(xué)光鑷系統(tǒng)(多光阱細(xì)胞力學(xué)光鑷生物分子力學(xué)光鑷,細(xì)胞微流變學(xué)光鑷)可以在已有顯微鏡上升級(jí)配置起來(lái),免校準(zhǔn)、使用簡(jiǎn)潔方便、經(jīng)濟(jì)。

impetux,Cygnium? G-422,LUNAM T-40i,DEIMUS T-10i細(xì)胞組織力學(xué)側(cè)量光鑷,細(xì)胞力學(xué)光鑷,多光阱細(xì)胞力學(xué)生物分子力學(xué)光鑷,單細(xì)胞力學(xué)光鑷,單分子力譜光鑷,馬達(dá)蛋白光鑷,微流變學(xué)光鑷

  • 在活細(xì)胞中,免校準(zhǔn)力測(cè)量
  • 多點(diǎn)中,活性微流變學(xué)測(cè)量
  • 細(xì)胞力學(xué)研究的自動(dòng)化例程
  • 與相差、微分干涉或熒光顯微鏡兼容
  • 組織中力測(cè)量(厚0.5mm
  • 高效捕捉、低細(xì)胞損害
  • 樣品*大激光功率控制
  •  
  • 光鑷平臺(tái)由兩個(gè)單元組成:
  • 光操控模塊:用于顯微樣品的捕獲和運(yùn)動(dòng)
  • 力傳感器模塊:用于試驗(yàn)中涉及的生物力的測(cè)量

可以在已有的顯微鏡上升級(jí)配置起來(lái),簡(jiǎn)潔方便經(jīng)濟(jì)

 

應(yīng)用范圍:

 

1. 單分子力譜

單分子力譜光鑷測(cè)量分析系統(tǒng)

 

?馬達(dá)蛋白

?DNA

?RNA

?蛋白-蛋白相互作用:配體受體;膜蛋白

2、馬達(dá)蛋白移動(dòng)、運(yùn)動(dòng)

3、單細(xì)胞力學(xué)

細(xì)胞移動(dòng)
細(xì)胞拉伸—膜彈性
細(xì)胞內(nèi)細(xì)胞器的操縱

4、微流變學(xué)

Key Bibliography

Here you will find useful material published related with our technology and products

Papers

  • Català, F. et al. “Extending calibration-free force measurements to optically-trapped rod-shaped samples“. Sci. Rep. 7, 42960; doi: 10.1038/srep42960 (2017).

Optical trapping has become an optimal choice for biological research at the microscale due to its noninvasiveperformance and accessibility for quantitative studies, especially on the forces involved inbiological processes. However, reliable force measurements depend on the calibration of the opticaltraps, which is different for each experiment and hence requires high control of the local variables,especially of the trapped object geometry. Many biological samples have an elongated, rod-likeshape, such as chromosomes, intracellular organelles (e.g., peroxisomes), membrane tubules, certainmicroalgae, and a wide variety of bacteria and parasites. This type of samples often requires severaloptical traps to stabilize and orient them in the correct spatial direction, making it more difficult todetermine the total force applied. Here, we manipulate glass microcylinders with holographic opticaltweezers and show the accurate measurement of drag forces by calibration-free direct detection ofbeam momentum.

  • R. Bola, F. Català. M. Montes-Usategui, E. Martín-Badosa. Optical tweezers for force measurements and rheological studies on biological samples”.15th workshop on Information Optics (WIO), 2016.

Measuring forces inside living cells is still a challenge due the characteristics of the trapped organelles (non-spherical, unknown size and index of refraction) and the cell cytoplasm surrounding them heterogeneous and dynamic, non-purely viscous). Here, we show how two very recent methods overcome these limitations: on the one hand, forces can be measured in such environment by the direct detection of changes in the light momentum; on the other hand, an active-passive calibration technique provides both the stiffness of the optical trap as well as the local viscoelastic properties of the cell cytoplasm.

  • Martín-Badosa, F. Català, J. Mas, M. Montes-Usategui, A. Farré, F. Marsà. “Force measurement in the manipulation of complex samples with holographic optical tweezers”15th workshop on Information Optics (WIO), 2016.
  • Derek Craig, Alison McDonald, Michael Mazilu, Helen Rendall, Frank Gunn-Moore, and Kishan Dholakia. “ Enhanced Optical Manipulation of Cells Using Antireflection Coated Microparticles”.ACS Photonics, 2 (10), pp 1403–1409, (2015).

    In molecular studies, an optically trapped bead may be functionalized to attach to a specific molecule, whereas in cell studies, direct manipulation with the optical field is usually employed. Using this approach, several methods may be used to measure forces with an optical trap. However, each has its limitations and requires an accurate knowledge of the sample parameters.6,7 In particular, force measurements can be challenging when working with nonspherical particles or in environments with an inhomogeneous viscosity, such as inside the cell. Recent developments in the field are moving toward obtaining direct force measurements by detecting light momentum changes. For this approach, the calibration factor only comes from the detection instrumentation and negates the requirement to recalibrate for changes in experimental conditions”.

  • Xing Ma, Anita Jannasch, Urban-Raphael Albrecht, Kersten Hahn, Albert Miguel-López, Erik Sch?ffer, and Samuel Sánchez. “Enzyme-Powered Hollow Mesoporous Janus Nanomotors”. Nano Lett., 15 (10), pp 7043–7050, (2015).

    “Using optical tweezers, we directly measured a holding force of 64 ± 16 fN, which was necessary to counteract the effective self-propulsion force generated by a single nanomotor. The successful demonstration of biocompatible enzyme-powered active nanomotors using biologically benign fuels has a great potential for future biomedical applications.”

  • Michael A. Taylor, Muhammad Waleed, Alexander B. Stilgoe, Halina Rubinsztein-Dunlop and Warwick P. Bowen. “Enhanced optical trapping via structured scattering“. Nature Photonics 9,669–673 (2015)
  • Gregor Thalhammer, Lisa Obmascher, and Monika Ritsch-Marte, “Direct measurement of axial optical forces“.Optics Express, Vol. 23, Issue 5, pp. 6112-6129 (2015)
  • Y. Jun, S.K. Tripathy, B.R.J. Narayanareddy, M. K. Mattson-Hoss, S.P. Gross, “Calibration of Optical Tweezers for In Vivo Force Measurements: How do Different Approaches Compare?”. Biophysical Journal, V 107, 1474-1484 (2014).

    Here, the authors present a comparison between two different methods for measuring forces inside living cells and provide measurements of the stall force of kinesin in vivo using the momentum-based approach. More information at: http://bioweb.bio.uci.edu/sgross/publications.html

  • A. Farré, E. Martín-Badosa, and M. Montes-Usategui, “The measurement of light momentum shines the path towards the cell”, Opt. Pur Apl. 47, 239-248 (2014).
  • A. Farré, F. Marsà, and M. Montes-Usategui, “A force measurement instrument for optical tweezers based on the detection of light momentum changes”, Proc. SPIE 9164, 916412 (2014).
  • J. Mas, A. Farré, J. Sancho-Parramon, E. Martín-Badosa, and M. Montes-Usategui, “Force measurements with optical tweezers inside living cells”,  Proc. SPIE 9164, 91640U (2014).
  • F. Català, F. Marsà, A. Farré, M. Montes-Usategui, and E. Martín-Badosa, “Momentum measurements with holographic optical tweezers for exploring force detection capabilities on irregular samples”, Proc. SPIE 9164, 91640A (2014).
  • A. Farré, F. Marsà, and M. Montes-Usategui, “Optimized back-focal-plane interferometry directly measures forces of optically trapped particles” Opt. Express 20, 12270-12291 (2012).

    This manuscript shows the relation between the determination of momentum measurements and back-focal-plane interferometry, and details how to obtain the force response of the sensor both from first principles and from its connection with trap stiffness calibration.

  • A. Farré and M. Montes-Usategui, “A force detection technique for single-beam optical traps based on direct measurement of light momentum changes” Opt. Express 18, 11955-11968 (2010).

 In this work, the authors show the feasibility of combining optical tweezers (single-beam gradient traps) with the determination of forces using the measurement of the light momentum change.



產(chǎn)品留言
標(biāo)題
聯(lián)系人
聯(lián)系電話
內(nèi)容
驗(yàn)證碼
點(diǎn)擊換一張
注:1.可以使用快捷鍵Alt+S或Ctrl+Enter發(fā)送信息!
2.如有必要,請(qǐng)您留下您的詳細(xì)聯(lián)系方式!
Copyright@ 2003-2025  世聯(lián)博研(北京)科技有限公司版權(quán)所有      電話:13466675923 傳真: 地址:北京市海淀區(qū)西三旗上奧世紀(jì)中心A座9層906 郵編:100096

少妇被黑人到高潮喷出白浆| 少妇勾搭外卖员在线观看| 日本一区二区不卡在线国产| 熟妇女人妻丰满中文字幕| 韩美国男人叉女人| 国产又粗又猛又色又免费| 亚洲卡通动漫第127页| 亚洲国产成久久成人综合一区| 久久99热东京热亲亲热| 又色又爽又黄的吃奶Av| 日韩 欧美 成人 免费| 美女让我插她的骚逼| 精品久久av免费一区二区三区| 国内揄拍国内精品| 国产蜜月精品高清一区二区三区| 妺妺坐在我腿上下面好湿| 人妻人久久精品中文字幕| 欧美亚洲综合久久夜夜嗨| 成年人的一级黄色带| 大鸡吧小骚逼视频| 久久亚洲精品中文字幕一| 裸毛片视频在线视频| 国产乱色国产精品免费播放| 国产精品人妇一区二区三区| 女人逼逼出水视频| 国产精品无码毛片久久久| 鸡巴插进缝里 日本| 从后面狠狠的干白嫩少妇| 欧美大鸡巴爆草美女| 亚洲高清中文字幕一区二区三区| 91孕妇精品一区二区三区| 大鸡巴抽插小骚逼视频免费| 一区二区三区中文欧美| 日本黑鸡吧黄色录像| 亚洲av熟妇高潮精品啪啪| 一个色综合色综合色综合| 一区二区三区 日韩在线| 97人妻精品一区二区三区视频| 久久久久久久 亚洲精品| 92婷婷伊人久久精品一区二区| 男人添女人下面免費视頻|