欧美在线高清晰一区二区,2020精品日韩久久久久,91久久久久精品国产熟女,精品无码久久久久久动漫软件

世聯(lián)博研(北京)科技有限公司 主營:Flexcell細胞力學和regenhu細胞3D生物打印機銷售技術(shù)服務(wù): 美國Flexcell品牌FX-5000T細胞牽張應(yīng)力加載培養(yǎng)系統(tǒng),F(xiàn)X-5K細胞顯微牽張應(yīng)力加載培養(yǎng)系統(tǒng),Tissue Train三維細胞組織培養(yǎng)與測試系統(tǒng),F(xiàn)X-5000C三維細胞組織壓應(yīng)力加載培養(yǎng)系統(tǒng),STR-4000細胞流體剪切應(yīng)力加載培養(yǎng)系統(tǒng),德國cellastix品牌Optical Stretcher高通量單細胞牽引應(yīng)變與分析系統(tǒng) Regenhu品牌3D discovery細胞友好型3D生物打印機,piuma細胞納米壓痕測試分析、aresis多點力學測試光鑷,MagneTherm細胞腫瘤電磁熱療測試分析系統(tǒng)
服務(wù)電話: 010-67529703
主營產(chǎn)品: Flexcell細胞力學和regenhu細胞3D生物打印機銷售技術(shù)服務(wù): 美國Flexcell品牌FX-5000T細胞牽張應(yīng)力加載培養(yǎng)系統(tǒng),F(xiàn)X-5K細胞顯微牽張應(yīng)力加載培養(yǎng)系統(tǒng),Tissue Train三維細胞組織培養(yǎng)與測試系統(tǒng),F(xiàn)X-5000C三維細胞組織壓應(yīng)力加載培養(yǎng)系統(tǒng),STR-4000細胞流體剪切應(yīng)力加載培養(yǎng)系統(tǒng),德國cellastix品牌Optical Stretcher高通量單細胞牽引應(yīng)變與分析系統(tǒng) Regenhu品牌3D discovery細胞友好型3D生物打印機,piuma細胞納米壓痕測試分析、aresis多點力學測試光鑷,MagneTherm細胞腫瘤電磁熱療測試分析系統(tǒng)
聯(lián)系我們

定量細胞和組織力學光鑷系統(tǒng)

  • 如果您對該產(chǎn)品感興趣的話,可以
  • 產(chǎn)品名稱:定量細胞和組織力學光鑷系統(tǒng)
  • 產(chǎn)品型號:Optical manipulation systems for quantitative cel
  • 產(chǎn)品展商:impetuxcomp
  • 產(chǎn)品文檔:無相關(guān)文檔
簡單介紹

世聯(lián)博研公司代理的面校正多光阱細胞力學光鑷系統(tǒng)(多光阱細胞力學光鑷生物分子力學光鑷,細胞微流變學光鑷)可以在已有顯微鏡上升級配置起來,免校準、使用簡潔方便、經(jīng)濟。 在活細胞中,免校準力測量 多點中,活性微流變學測量 細胞力學研究的自動化例程 與相差、微分干涉或熒光顯微鏡兼容 組織中力測量(厚0.5mm) 高效捕捉、低細胞損害 樣品*大激光功率控制

產(chǎn)品描述

世聯(lián)博研公司代理的面校正多光阱細胞力學光鑷系統(tǒng)(多光阱細胞力學光鑷生物分子力學光鑷,細胞微流變學光鑷)可以在已有顯微鏡上升級配置起來,免校準、使用簡潔方便、經(jīng)濟。

impetux,Cygnium? G-422,LUNAM T-40i,DEIMUS T-10i細胞組織力學側(cè)量光鑷,細胞力學光鑷,多光阱細胞力學生物分子力學光鑷,單細胞力學光鑷,單分子力譜光鑷,馬達蛋白光鑷,微流變學光鑷

  • 在活細胞中,免校準力測量
  • 多點中,活性微流變學測量
  • 細胞力學研究的自動化例程
  • 與相差、微分干涉或熒光顯微鏡兼容
  • 組織中力測量(厚0.5mm
  • 高效捕捉、低細胞損害
  • 樣品*大激光功率控制
  •  
  • 光鑷平臺由兩個單元組成:
  • 光操控模塊:用于顯微樣品的捕獲和運動
  • 力傳感器模塊:用于試驗中涉及的生物力的測量

可以在已有的顯微鏡上升級配置起來,簡潔方便經(jīng)濟

 

應(yīng)用范圍:

 

1. 單分子力譜

單分子力譜光鑷測量分析系統(tǒng)

 

?馬達蛋白

?DNA

?RNA

?蛋白-蛋白相互作用:配體受體;膜蛋白

2、馬達蛋白移動、運動

3、單細胞力學

細胞移動
細胞拉伸—膜彈性
細胞內(nèi)細胞器的操縱

4、微流變學

Key Bibliography

Here you will find useful material published related with our technology and products

Papers

  • Català, F. et al. “Extending calibration-free force measurements to optically-trapped rod-shaped samples“. Sci. Rep. 7, 42960; doi: 10.1038/srep42960 (2017).

Optical trapping has become an optimal choice for biological research at the microscale due to its noninvasiveperformance and accessibility for quantitative studies, especially on the forces involved inbiological processes. However, reliable force measurements depend on the calibration of the opticaltraps, which is different for each experiment and hence requires high control of the local variables,especially of the trapped object geometry. Many biological samples have an elongated, rod-likeshape, such as chromosomes, intracellular organelles (e.g., peroxisomes), membrane tubules, certainmicroalgae, and a wide variety of bacteria and parasites. This type of samples often requires severaloptical traps to stabilize and orient them in the correct spatial direction, making it more difficult todetermine the total force applied. Here, we manipulate glass microcylinders with holographic opticaltweezers and show the accurate measurement of drag forces by calibration-free direct detection ofbeam momentum.

  • R. Bola, F. Català. M. Montes-Usategui, E. Martín-Badosa. Optical tweezers for force measurements and rheological studies on biological samples”.15th workshop on Information Optics (WIO), 2016.

Measuring forces inside living cells is still a challenge due the characteristics of the trapped organelles (non-spherical, unknown size and index of refraction) and the cell cytoplasm surrounding them heterogeneous and dynamic, non-purely viscous). Here, we show how two very recent methods overcome these limitations: on the one hand, forces can be measured in such environment by the direct detection of changes in the light momentum; on the other hand, an active-passive calibration technique provides both the stiffness of the optical trap as well as the local viscoelastic properties of the cell cytoplasm.

  • Martín-Badosa, F. Català, J. Mas, M. Montes-Usategui, A. Farré, F. Marsà. “Force measurement in the manipulation of complex samples with holographic optical tweezers”15th workshop on Information Optics (WIO), 2016.
  • Derek Craig, Alison McDonald, Michael Mazilu, Helen Rendall, Frank Gunn-Moore, and Kishan Dholakia. “ Enhanced Optical Manipulation of Cells Using Antireflection Coated Microparticles”.ACS Photonics, 2 (10), pp 1403–1409, (2015).

    In molecular studies, an optically trapped bead may be functionalized to attach to a specific molecule, whereas in cell studies, direct manipulation with the optical field is usually employed. Using this approach, several methods may be used to measure forces with an optical trap. However, each has its limitations and requires an accurate knowledge of the sample parameters.6,7 In particular, force measurements can be challenging when working with nonspherical particles or in environments with an inhomogeneous viscosity, such as inside the cell. Recent developments in the field are moving toward obtaining direct force measurements by detecting light momentum changes. For this approach, the calibration factor only comes from the detection instrumentation and negates the requirement to recalibrate for changes in experimental conditions”.

  • Xing Ma, Anita Jannasch, Urban-Raphael Albrecht, Kersten Hahn, Albert Miguel-López, Erik Sch?ffer, and Samuel Sánchez. “Enzyme-Powered Hollow Mesoporous Janus Nanomotors”. Nano Lett., 15 (10), pp 7043–7050, (2015).

    “Using optical tweezers, we directly measured a holding force of 64 ± 16 fN, which was necessary to counteract the effective self-propulsion force generated by a single nanomotor. The successful demonstration of biocompatible enzyme-powered active nanomotors using biologically benign fuels has a great potential for future biomedical applications.”

  • Michael A. Taylor, Muhammad Waleed, Alexander B. Stilgoe, Halina Rubinsztein-Dunlop and Warwick P. Bowen. “Enhanced optical trapping via structured scattering“. Nature Photonics 9,669–673 (2015)
  • Gregor Thalhammer, Lisa Obmascher, and Monika Ritsch-Marte, “Direct measurement of axial optical forces“.Optics Express, Vol. 23, Issue 5, pp. 6112-6129 (2015)
  • Y. Jun, S.K. Tripathy, B.R.J. Narayanareddy, M. K. Mattson-Hoss, S.P. Gross, “Calibration of Optical Tweezers for In Vivo Force Measurements: How do Different Approaches Compare?”. Biophysical Journal, V 107, 1474-1484 (2014).

    Here, the authors present a comparison between two different methods for measuring forces inside living cells and provide measurements of the stall force of kinesin in vivo using the momentum-based approach. More information at: http://bioweb.bio.uci.edu/sgross/publications.html

  • A. Farré, E. Martín-Badosa, and M. Montes-Usategui, “The measurement of light momentum shines the path towards the cell”, Opt. Pur Apl. 47, 239-248 (2014).
  • A. Farré, F. Marsà, and M. Montes-Usategui, “A force measurement instrument for optical tweezers based on the detection of light momentum changes”, Proc. SPIE 9164, 916412 (2014).
  • J. Mas, A. Farré, J. Sancho-Parramon, E. Martín-Badosa, and M. Montes-Usategui, “Force measurements with optical tweezers inside living cells”,  Proc. SPIE 9164, 91640U (2014).
  • F. Català, F. Marsà, A. Farré, M. Montes-Usategui, and E. Martín-Badosa, “Momentum measurements with holographic optical tweezers for exploring force detection capabilities on irregular samples”, Proc. SPIE 9164, 91640A (2014).
  • A. Farré, F. Marsà, and M. Montes-Usategui, “Optimized back-focal-plane interferometry directly measures forces of optically trapped particles” Opt. Express 20, 12270-12291 (2012).

    This manuscript shows the relation between the determination of momentum measurements and back-focal-plane interferometry, and details how to obtain the force response of the sensor both from first principles and from its connection with trap stiffness calibration.

  • A. Farré and M. Montes-Usategui, “A force detection technique for single-beam optical traps based on direct measurement of light momentum changes” Opt. Express 18, 11955-11968 (2010).

 In this work, the authors show the feasibility of combining optical tweezers (single-beam gradient traps) with the determination of forces using the measurement of the light momentum change.



產(chǎn)品留言
標題
聯(lián)系人
聯(lián)系電話
內(nèi)容
驗證碼
點擊換一張
注:1.可以使用快捷鍵Alt+S或Ctrl+Enter發(fā)送信息!
2.如有必要,請您留下您的詳細聯(lián)系方式!
Copyright@ 2003-2025  世聯(lián)博研(北京)科技有限公司版權(quán)所有      電話:13466675923 傳真: 地址:北京市海淀區(qū)西三旗上奧世紀中心A座9層906 郵編:100096

99草草视频在线精品| 黑人大吊性交啪啪啪| 国产精品自在拍首页| 国产精品操大屁股老淑女| 美女被插b在线观看| 大鸡巴干小逼视频| 波多野结衣浴尿解禁在线| 免费国产香蕉视频在线观看| 老头鸡巴操老太骚逼| 黑丝美女被操到高潮| 日韩av午夜福利在线观看| 极品一区二区三区av| 亚洲av 又黄又爽十大| 九九视频免费在线观看| 日本福利一区二区视频| 久久69精品久久久久免| 欧美日本大白屁股大黑逼操逼视频| 欧美真人性爱视频| 少妇无码一区二区二三区| 大胸美女被c的嗷嗷叫视频| 国产精品久久一区二区三区夜色| 少妇精品久久久一区二区免费| 操我好舒服用力视频| 交换夫妇4中文字幕| 新视觉亚洲三区二区一区理伦| 日韩av一区二区高清不卡| 美女穿黑丝被大鸡巴猛操| 一级特一黄大片欧美久久| 午夜精品福利一区二区三区蜜桃p| 可以免费看黄的香蕉视频| 亚洲av午夜福利精品一区| 欧美大鸡巴操穴日韩| 被大鸡巴操淫液视频| 亚洲国产国产综合一区首页| 午夜国产精品午夜福利网| 国产一区曰韩二区欧美三区| 日韩欧美中文字幕国产精品| 亚洲大尺度无码无码专线一区| 黑人大吊又操又添| 国产一区二区三区免费观在线| 怎么样操女人的逼亚洲Av黄片段|